Estimation of the Number of Clusters Using Multiple Clustering Validity Indices
نویسندگان
چکیده
One of the challenges in unsupervised machine learning is finding the number of clusters in a dataset. Clustering Validity Indices (CVI) are popular tools used to address this problem. A large number of CVIs have been proposed, and reports that compare different CVIs suggest that no single CVI can always outperform others. Following suggestions found in prior art, in this paper we formalize the concept of using multiple CVIs for cluster number estimation in the framework of multi-classifier fusion. Using a large number of datasets, we show that decision-level fusion of multiple CVIs can lead to significant gains in accuracy in estimating the number of clusters, in particular for highdimensional datasets with large number of clusters.
منابع مشابه
ارایه شاخصی جدید جهت سنجش اعتبار خوشه بندی در الگوریتم های خوشه بندی فازی نوع-2
One of the main issues in fuzzy clustering is to determine the number of clusters that should be available before clustering and selection of different values for the number of clusters will lead to different results. Then, different clusters obtained from different number of clusters should be validated with an index. But so far such an index has not been introduced for interval type-2 fuzzy C...
متن کاملChoosing the Best Hierarchical Clustering Technique Based on Principal Components Analysis for Suspended Sediment Load Estimation
1- INTRODUCTION The assessment of watershed sediment load is necessary for controling soil erosion and reducing the potential of sediment production. Different estimates of sediment amounts along with the lack of long-term measurements limits the accessibility to reliable data series of erosion rate and sediment yield. Therefore, the observed data of suspended sediment load could be used to ...
متن کاملانتخاب اعضای ترکیب در خوشهبندی ترکیبی با استفاده از رأیگیری
Clustering is the process of division of a dataset into subsets that are called clusters, so that objects within a cluster are similar to each other and different from objects of the other clusters. So far, a lot of algorithms in different approaches have been created for the clustering. An effective choice (can combine) two or more of these algorithms for solving the clustering problem. Ensemb...
متن کاملخوشهبندی خودکار دادهها با بهرهگیری از الگوریتم رقابت استعماری بهبودیافته
Imperialist Competitive Algorithm (ICA) is considered as a prime meta-heuristic algorithm to find the general optimal solution in optimization problems. This paper presents a use of ICA for automatic clustering of huge unlabeled data sets. By using proper structure for each of the chromosomes and the ICA, at run time, the suggested method (ACICA) finds the optimum number of clusters while optim...
متن کاملEstimation of geochemical elements using a hybrid neural network-Gustafson-Kessel algorithm
Bearing in mind that lack of data is a common problem in the study of porphyry copper mining exploration, our goal was set to identify the hidden patterns within the data and to extend the information to the data-less areas. To do this, the combination of pattern recognition techniques has been used. In this work, multi-layer neural network was used to estimate the concentration of geochemical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010